Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(3): e0086123, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38294215

RESUMEN

We report the draft genomes of four Kluyveromyces marxianus isolates obtained from the elaboration process of henequen (Agave fourcroydes) mezcal, a Mexican alcoholic beverage. The average nucleotide identity analysis revealed that isolates derived from agave plants are distinct from those from other environments, including agave fermentations.

2.
Parasitol Res ; 122(11): 2641-2650, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37676306

RESUMEN

Cyclospora cayetanensis is an enteric coccidian parasite responsible for gastrointestinal disease transmitted through contaminated food and water. It has been documented in several countries, mostly with low-socioeconomic levels, although major outbreaks have hit developed countries. Detection methods based on oocyst morphology, staining, and molecular testing have been developed. However, the current MLST panel offers an opportunity for enhancement, as amplification of all molecular markers remains unfeasible in the majority of samples. This study aims to address this challenge by evaluating two approaches for analyzing the genetic diversity of C. cayetanensis and identifying reliable markers for subtyping: core homologous genes and mitochondrial genome analysis. A pangenome was constructed using 36 complete genomes of C. cayetanensis, and a haplotype network and phylogenetic analysis were conducted using 33 mitochondrial genomes. Through the analysis of the pangenome, 47 potential markers were identified, emphasizing the need for more sequence data to achieve comprehensive characterization. Additionally, the analysis of mitochondrial genomes revealed 19 single-nucleotide variations that can serve as characteristic markers for subtyping this parasite. These findings not only contribute to the selection of molecular markers for C. cayetanensis subtyping, but they also drive the knowledge toward the potential development of a comprehensive genotyping method for this parasite.


Asunto(s)
Cyclospora , Parásitos , Animales , Cyclospora/genética , Filogenia , Tipificación de Secuencias Multilocus , Parásitos/genética , Técnicas de Genotipaje , Biomarcadores
4.
Plants (Basel) ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432865

RESUMEN

In the present study, the nematicidal and acaricidal activity of three Enterobacter endophytic strains isolated from Mimosa pudica nodules was evaluated. The percentages of mortality of Enterobacter NOD4 against Panagrellus redivivus was 81.2%, and against Nacobbus aberrans 70.1%, Enterobacter NOD8 72.4% and 62.5%, and Enterobacter NOD10 64.8% and 58.7%, respectively. While against the Tyrophagus putrescentiae mite, the mortality percentages were 68.2% due to Enterobacter NOD4, 64.3% due to Enterobacter NOD8 and 77.8% due to Enterobacter NOD10. On the other hand, the ability of the three Enterobacter strains to produce indole acetic acid and phosphate solubilization, characteristics related to plant growth-promoting bacteria, was detected. Bioinformatic analysis of the genomes showed the presence of genes related to IAA production, phosphate solubilization, and nitrogen fixation. Phylogenetic analyzes of the recA gene, phylogenomics, and average nucleotide identity (ANI) allowed us to identify the strain Enterobacter NOD8 related to E. mori and Enterobacter NOD10 as E. asburiae, while Enterobacter NOD4 was identified as a possible new species of this species. The plant growth-promoting, acaricidal and nematicidal activity of the three Enterobacter strains makes them a potential agent to include in biocontrol alternatives and as growth-promoting bacteria in crops of agricultural interest.

5.
Arch Microbiol ; 204(1): 73, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34951665

RESUMEN

Accurate recognition of the closely related species Klebsiella pneumoniae, Klebsiella quasipneumoniae and Klebsiella variicola by phenotypic, biochemical and automated tests is notoriously unreliable in hospitals' diagnostic laboratories. A comparative genomics approach was conducted for the correct differentiation of the main bacterial species in the K. pneumoniae complex. Analysis of the deduced proteomes of 87 unique genomes of the Klebsiella in public databases, was used for the identification of unique protein family members. This allowed the design of a multiplex-PCR assay for the correct differentiation of these three species from different origins. This system allowed us to determine the prevalence of K. pneumoniae, K. quasipneumoniae and K. variicola among a collection of 552 clinical isolates. Of these, 87.3% (482/552) isolates corresponded to K. pneumoniae, 6.7% (33/552) to K. quasipneumoniae and 5.9% (33/552) to K. variicola. The multiplex-PCR results showed a 100% accuracy for the correct identification of the three species evaluated, which was validated with rpoB phylogenetic sequence analysis.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella/genética , Klebsiella pneumoniae/genética , Reacción en Cadena de la Polimerasa Multiplex , Filogenia
6.
Microbiol Resour Announc ; 10(26): e0032921, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34197204

RESUMEN

Klebsiella variicola F2R9 was isolated from banana root, and its sequence has been deposited as ATCC BAA-830. It corresponds to sequence type 11 (ST11) and KL16 and contains no identifiable plasmids. The genome showed few antimicrobial resistance and virulence genes and several plant association genes. The strain showed susceptibility to most antimicrobials and avirulent behavior.

7.
Microorganisms ; 9(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067853

RESUMEN

The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and its growth in the presence of bile salts. The genomic and bioinformatic analyses included the prediction of gene and protein metabolic functions, a pan-genome and phylogenomic analysis. BP-UAMX survived at pH 3, while bile salts (0.2-0.3% w/v) increased its growth rate. Moreover, it showed the ability to metabolize simple and complex carbon sources (glucose, starch, carboxymethyl-cellulose, inulin, and tributyrin), showing a differentiated electrophoretic profile. Genome was assembled into a single contig, with a high percentage of genes and proteins associated with the metabolism of amino acids, carbohydrates, and lipids. Antibiotic resistance genes were detected, but only one beta-Lactam resistance protein related to the inhibition of peptidoglycan biosynthesis was identified. The pan-genome of BP-UAMX is still open with phylogenetic similarities with other Bacillus of human origin. Therefore, BP-UAMX seems to be adapted to the intestinal environment, with physiological and genomic analyses demonstrating the ability to metabolize complex carbon sources, the strain has an open pan-genome with continuous evolution and adaptation.

8.
PeerJ ; 8: e9553, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983629

RESUMEN

Shigella flexneri is the causative agent of dysentery. For pathogens, iron is a critical micronutrient as its bioavailability is usually low in bacterial niches. This metal is involved in critical physiological processes mainly as a component of important metabolic molecules involved in redox reactions. Usually bacteria respond to fluctuations in iron availability to regulate iron acquisition and other iron-related functions. Recently the close metabolic feedback between iron and riboflavin, another pivotal biological redox agent, began to draw attention in bacteria. This is a widespread biological phenomenon, partly characterized by the coordination of regulatory responses to iron and riboflavin, probably owed to the involvement of these cofactors in common processes. Nonetheless, no systematic analyses to determine the extent of this regulatory effect have been performed in any species. Here, the transcriptomics responses to iron, riboflavin, iron in the presence of riboflavin and riboflavin in the presence of iron were assessed and compared in S. flexneri. The riboflavin regulon had a 43% overlap with the iron regulon. Notably, the presence of riboflavin highly increased the number of iron-responsive genes. Reciprocally, iron drastically changed the pool of riboflavin-responsive genes. Gene ontology (GO) functional terms enrichment analysis showed that biological processes were distinctively enriched for each subgroup of responsive genes. Among the biological processes regulated by iron and riboflavin were iron uptake, amino acids metabolism and electron transfer for ATP synthesis. Thus, iron and riboflavin highly affect the transcriptomics responses induced by each other in S. flexneri. GO terms analysis suggests that iron and riboflavin coordinately regulate specific physiological functions involving redox metabolism.

9.
Front Microbiol ; 11: 579612, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391198

RESUMEN

Hypermucoviscosity (hmv) is a capsule-associated phenotype usually linked with hypervirulent Klebsiella pneumoniae strains. The key components of this phenotype are the RmpADC proteins contained in non-transmissible plasmids identified and studied in K. pneumoniae. Klebsiella variicola is closely related to K. pneumoniae and recently has been identified as an emergent human pathogen. K. variicola normally contains plasmids, some of them carrying antibiotic resistance and virulence genes. Previously, we described a K. variicola clinical isolate showing an hmv-like phenotype that harbors a 343-kb pKV8917 plasmid. Here, we investigated whether pKV8917 plasmid carried by K. variicola 8917 is linked with the hmv-like phenotype and its contribution to virulence. We found that curing the 343-kb pKV8917 plasmid caused the loss of hmv, a reduction in capsular polysaccharide (P < 0.001) and virulence. In addition, pKV8917 was successfully transferred to Escherichia coli and K. variicola strains via conjugation. Notably, when pKV8917 was transferred to K. variicola, the transconjugants displayed an hmv-like phenotype, and capsule production and virulence increased; these phenotypes were not observed in the E. coli transconjugants. These data suggest that the pKV8917 plasmid carries novel hmv and capsule determinants. Whole-plasmid sequencing and analysis revealed that pKV8917 does not contain rmpADC/rmpA2 genes; thus, an alternative mechanism was searched. The 343-kb plasmid contains an IncFIB backbone and shares a region of ∼150 kb with a 99% identity and 49% coverage with a virulence plasmid from hypervirulent K. variicola and multidrug-resistant K. pneumoniae. The pKV8917-unique region harbors a cellulose biosynthesis cluster (bcs), fructose- and sucrose-specific (fru/scr) phosphotransferase systems, and the transcriptional regulators araC and iclR, respectively, involved in membrane permeability. The hmv-like phenotype has been identified more frequently, and recent evidence supports the existence of rmpADC/rmpA2-independent hmv-like pathways in this bacterial genus.

10.
Sci Rep ; 9(1): 10610, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337792

RESUMEN

Klebsiella variicola is considered an emerging pathogen in humans and has been described in different environments. K. variicola belongs to Klebsiella pneumoniae complex, which has expanded the taxonomic classification and hindered epidemiological and evolutionary studies. The present work describes the molecular epidemiology of K. variicola based on MultiLocus Sequence Typing (MLST) developed for this purpose. In total, 226 genomes obtained from public data bases and 28 isolates were evaluated, which were mainly obtained from humans, followed by plants, various animals, the environment and insects. A total 166 distinct sequence types (STs) were identified, with 39 STs comprising at least two isolates. The molecular epidemiology of K. variicola showed a global distribution for some STs was observed, and in some cases, isolates obtained from different sources belong to the same ST. Several examples of isolates corresponding to kingdom-crossing bacteria from plants to humans were identified, establishing this as a possible route of transmission. goeBURST analysis identified Clonal Complex 1 (CC1) as the clone with the greatest distribution. Whole-genome sequencing of K. variicola isolates revealed extended-spectrum ß-lactamase- and carbapenemase-producing strains with an increase in pathogenicity. MLST of K. variicola is a strong molecular epidemiological tool that allows following the evolution of this bacterial species obtained from different environments.


Asunto(s)
Infecciones por Klebsiella/epidemiología , Klebsiella/genética , Genoma Bacteriano/genética , Humanos , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Filogenia
11.
Sci Rep ; 8(1): 3149, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453341

RESUMEN

Vibrio cholerae, a pandemic diarrheagenic bacterium, is able to synthesize the essential vitamin riboflavin through the riboflavin biosynthetic pathway (RBP) and also to internalize it through the RibN importer. In bacteria, the way riboflavin biosynthesis and uptake functions correlate is unclear. To gain insights into the role of the riboflavin provision pathways in the physiology of V. cholerae, we analyzed the transcriptomics response to extracellular riboflavin and to deletions of ribD (RBP-deficient strain) or ribN. Many riboflavin-responsive genes were previously reported to belong to the iron regulon, including various iron uptake genes. Real time PCR analysis confirmed this effect and further documented that reciprocally, iron regulates RBP and ribN genes in a riboflavin-dependent way. A subset of genes were responding to both ribD and ribN deletions. However, in the subset of genes specifically affected in the ∆ribD strain, the functional terms protein folding and oxidation reduction process were enriched, as determined by a Gene Ontology analysis. In the gene subset specifically affected in the ∆ribN strain, the cytochrome complex assembly functional term was enriched. Results suggest that iron and riboflavin interrelate to regulate its respective provision genes and that both common and specific effects of biosynthesized and internalized riboflavin exist.


Asunto(s)
Perfilación de la Expresión Génica , Hierro/metabolismo , Riboflavina/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Transporte Biológico , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...